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30T Machine at Los Alamos National Laboratory

� Joint project between Compaq and Los Alamos National
Laboratory

� 30 TeraOps, expected to be delivered by the end of 2002,
#1 in the top 500

� 10 TeraOps delivered by February 5 2002, operational by
April 2002

� Total contract price - $215M
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Overview of the Facility

� 43,500 sq. ft. unobstructed computer room

� Power 7.1 MW expandable to 30 MW

� Water 130,000 GPD expandable to to 215,000 GPD
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Overview of the Facility (continued)
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Overview of the Facility (continued)
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System Configuration of the Initial System

� 1024 4-processor AlphaServer Es45s

� 4096 Alphas EV68 @ 1Ghz

� 64 nodes with 32GB of memory, 192 with 16 GB, 768 with
8GB ( � 11 Terabytes)

� 1312 36-GB hard drives
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System configuration of the Initial System

� 2048 Quadrics Elan NICs

� 2 independent network rails with 1024-way federated
switches

� 1024 Dual 100 Mbit Ethernet NICs

� 1024 Gbit Ethernet NICs

� 128 RAIDS
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and ....

� 1024 True64 Unix

� Alphaserver SC software

� :-(
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Research Overview

� Analysis of the network under heavy load and permutation
patterns.

� USE OF MULTIPLE NETWORK RAILS.

� PERFORMANCE EVALUATION OF I/O TRAFFIC AND

PLACEMENT OF I/O NODES. INTERFERENCE OF

BACKGROUND I/O TRAFFIC WITH OTHER JOBS.

� Performance evaluation of the hardware- and
software-based collective communication patterns.

� Job scheduling and resource management (RMS).

� Fault-tolerance of large-scale machines.
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Analysis of the Quadrics network

� Fabrizio Petrini, Adolfy Hoisie, Wu-chun Feng and
RichardGraham. Performance Evaluation of the Quadrics
Interconnection Network, In Workshop on Communication
Architecture for Clusters 2001(CAC’01), San Francisco,
CA, April 2001.

� Also, Hot Interconnects 2001 and IEEE Micro
January-February 2002

� Comprehensive network analysis submitted to Journal of
Cluster Computing.
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Multiple Independent Network Rails

Using multiple independent networks is an emerging technique
to (1) overcome bandwidth limitations and (2) enhance
fault-tolerance.
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Examples of Multirailed Machines

� ASCI White at Lawrence Livermore National Laboratory –
most powerful computer in the world, IBM SP

� The Terascale Computing System (TCS) at the Pittsburgh
Supercomputing Center – the second most powerful
computer in the world, Quadrics

� ASCI Q machine, currently under development at Los
Alamos National Laboratory, Quadrics.

� Infiniband

� Experimental Linux clusters, Quadrics and Myrinet
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Open Problems

� Rail assignment

� Striping over multiple rails

� Implementation of communication libraries (e.g., MPI,
Cray Shmem)

� Multiple rails and I/O interfaces

� Not much is known on how to use multiple rails
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Rail Allocation
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Rail Allocation
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Rail Allocation
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Rail Allocation
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Bidirectional Traffic on the I/O bus

� Most PCI busses cannot efficiently handle bidirectional
traffic with high performance networks

� Typically, aggregate bidirectional bandwidth is only 80% of
the unidirectional one (Intel 840, Serverworks HE, Compaq
Wildfire)

� The same problem is likely to appear in the first Infiniband
and PCI-X implementations (e.g., those based on the Intel
870)

� Bidirectional traffic is very common in ASCI applications
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State of the Art on Rail Allocation

� A common algorithm to allocate messages to rails is to
choose the rail based on the process id of the destination
process (rail = destination_id � � �

RAILS)

� Multiple processes can compete for the same rail even if
other rails are available

� No message striping

� No attempt to minimize bidirectional traffic
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Outline

� Basic Algorithm

� Static rail allocation

� Dynamic rail allocation with local information

� Dynamic rail allocation with global information

� Hybrid algorithm

� Experimental evaluation
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Basic Algorithm

� The basic algorithm doesn’t use any communication
protocol

� Whenever a node needs to send a message, it send it on one
rail, choosing it in round-robin fashion

� This base case can serve to illustrate the effects of both the
overhead of the other protocols and the penalties of the
bidirectional traffic
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Static Rail Allocation

� With static rail allocation each network interface can either
send or receive messages, and the direction is defined at
initialization time.
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Lower Bound with Static Rail Allocation
A high number of rails is required for statically allocated
unidirectional traffic.
A network with r rails can support no more than n nodes, where

� � �
���

�
�

0

2

4

6

8

10

12

14

16

4 16 64 256 1024 4096

ra
ils

nodes

optimal allocation

Some highlights of the system research of the ASCI 30T supercomputer – p.30/84



Lower Bound with Static Rail Allocation
A high number of rails is required for statically allocated
unidirectional traffic.
A network with r rails can support no more than n nodes, where

� � �
���

�
�

0

2

4

6

8

10

12

14

16

4 16 64 256 1024 4096

ra
ils

nodes

optimal allocation

Some highlights of the system research of the ASCI 30T supercomputer – p.30/84



Dynamic Algorithm with Local Information

� With the dynamic algorithms the direction in which each
network interface is used can change over time

� The local-dynamic algorithm allocates the rails in both
directions, using local information available on the sender
side

� Messages are sent over rails that not sending or receiving
other messages

� Messages can be striped over multiple rails

� There is no guarantee that traffic will be unidirectional
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Dynamic Algorithm with Global Information

� The dynamic algorithm tries to reserve both end-points
before sending a message

� In its core there is a sophisticated distributed algorithm that
(1) ensures unidirectional traffic at both ends and (2) avoids
deadlocks, potentially generated by multiple requests with
a cyclic dependency
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Dynamic Algorithm: Implementation Issues

� The efficient implementation of this algorithm requires
some processing power in the network interface, which
needs to process control packets and perform the
reservation protocol without interfering with the host

� For example, the Quadrics network interface is equipped
with a thread processor that can process an incoming
packet, do some basic processing and send a reply in as few
as 2 �s
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Dynamic Algorithm
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Livelock in the Dynamic Algorithm
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Livelock Avoidance in the Dynamic Algorithm
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Livelock Avoidance in the Dynamic Algorithm
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Livelock Avoidance in the Dynamic Algorithm
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Hybrid Algorithm

� The dynamic algorithm incurs a substantial overhead, for
every message size.

� The hybrid algorithm sends short message without a
reservation protocol

� Short messages are not striped

� It can cause bidirectional traffic for a short time
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Results - Bandwidth, 4KB messages
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Results - Latency, 4KB messages
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Results - Bandwidth, 64KB messages
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Results - Latency, 64KB messages
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Results - Bandwidth vs Number of Rails
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Results - Saturation Points vs Message Size
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Results - Hybrid, Bandwidth with Striping
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Results - Hybrid, Latency with Striping
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Publications on Multirail Algorithms

� Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy
Hoisie, and Leonid Gurvits. Using Multirail Networks in
High-Performance Clusters. In IEEE Cluster 2001,
Newport Beach, CA, October 2001.

� Selected for publication on the journal “Concurrency,
Practice and Experience”.
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Open Problems with I/O network traffic

� Characterization of I/O traffic (Time and Space distribution)

� I/O reads and writes

� Placement of I/O nodes

� Running computational tasks on I/O nodes

� Interference between jobs performing I/O and other jobs
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Performance analysis with a single parallel job

We address five distinct performance dimensions.

� I/O read/write ratio.

� The inter-arrival time between two I/O messages issued by
a client node can be either uniformly or exponentially
distributed.

� I/O traffic: this parameter defines the access pattern to the
I/O nodes. Two patterns have been analyzed:

� uniform I/O, each node performing I/O randomly
selects its destination for every transaction and

� fixed I/O, each node uses a fixed destination for all its
transactions.
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Performance analysis with a single parallel job

� I/O node mapping (hot-node mapping): this parameter
defines the placement of the I/O nodes in the cluster. Two
alternatives have been tested:

� clustered, I/O nodes located in consecutive nodes at the
higher nodes locations and

� distributed, I/O nodes uniformly distributed through the
cluster.

� Application mapping: defines whether the application
performing I/O runs on the I/O nodes (all nodes mapping)
or not (non-I/O nodes mapping).
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Modeling I/O traffic: multiple hot-spots

� The network traffic generated by a parallel job that is
performing input/output can be modeled with a collection
of hot-spots, where each hot-spot is a node that acts as an
I/O server and is the target of multiple messages originated
by the other nodes.

� This test has been designed to analyze the behavior of the
network when one parallel job is performing transactions
over several hot nodes.
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Placement of I/O Nodes in a single parallel job
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Placement of I/O Nodes in a single parallel job

Some highlights of the system research of the ASCI 30T supercomputer – p.55/84



Placement of I/O nodes: Clustered Mapping
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Placement of I/O Nodes: Distributed Mapping
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Fairness Problem with Hot-Spot
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Performance results with a single parallel job

� Insensitive to read/write ratio.

� Insensitive to time and space distributions.

� Slightly sensitive to application mapping when the I/O
nodes perform computation.

� Better performance with distributed mapping, due to a
fairness problem in the network.
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Interference of Background I/O Traffic
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Performance analysis

� We consider two distinct jobs, one doing I/O an another
computation and communication.

� I/O node mapping (clustered and distributed).

� Application mapping (the I/O nodes can perform
computation).
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Application Mapping: All Nodes
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Application Mapping: non-I/O nodes
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Interference of Background I/O Traffic
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Placement of I/O Nodes in a Large Scale Cluster

With a single I/O job, it is better to distribute the I/O server
rather that cluster them in a single segment of the network.

By doing so, we can get a bandwidth increase of about 20%

The performance is insensitive to read/write ratio, mapping
of the I/O job, inter-arrival time, access pattern.

Multiple jobs can be run concurrently without interference,
as long as these jobs are not mapped on the I/O nodes.
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Collective Communication

� The efficient implementation of collective communication
is a challenging design effort.

� Very important to guarantee scalability of barrier
synchronization, broadcast, gather, scatter, reduce etc.

� Essential to implement system primitives to enhance
fault-tolerance.

� The experimental results are obtained on a 64-node
Alphaserver cluster.

� In order to expose the real network performance, we place
the communication buffers in Elan memory.

�

Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg and Adolfy Hoisie,

Hardware- and Software-Based Collective Communication on the

Quadrics Network, IEEE International Symposium on Network

Computing and Applications 2001 (NCA 2001), Boston, MA.
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Software Multicast
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Hardware Multicast

Node iRoot node

init barrier init barrier

update seq #update seq #

wait eventwait event

OK or FAIL
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test seq #

Broadcast Transaction
tim

e

trigger event

repeat if FAIL
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or pollor poll
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Barrier Synchronization
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Barrier Synchronization with Background Traffic
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Hardware Barrier with Background Traffic
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Software Barrier with Background Traffic

1

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096

Latency (µs)

Barrier Test - 64 nodes, 1 CPU per node (latency distribution)

elan_gsync()
elan_gsync() - complement traffic

elan_gsync() - uniform traffic

Some highlights of the system research of the ASCI 30T supercomputer – p.72/84



Broadcast
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Broadcast Scalability
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Collective Communication

� Hardware-based synchronization takes as little as 6 �sec on
a 64-node Alphaserver, with very good scalability.

� Good latency and scalability are achieved with the
software-based synchronization too, which takes about 15

�sec.

� The hardware barrier is almost insensitive to background
traffic, with 93% of the synchronizations delivered in less
than 20 �sec.

� With the broadcast, both implementations can deliver a
sustained bandwidth of 288 MB/sec Elan memory to Elan
memory and 200 MB/sec main memory to main memory.
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Permutation Patterns
In these permutation patterns each node sends to a single
destination using a pre-defined permutation of the processing
nodes. Not all the networks can handle these patterns efficiently.

� Bit-reversal.

� Butterfly.

� Complement.

� Matrix transpose.

� Perfect-shuffle.

� Nearest neighbor.
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Neighbor
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Complement
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Bit Reversal
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Congestion Matrix for Complement Traffic
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Congestion Matrix for Bit Reversal Traffic
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Hardware- and software-based collectives

� Important results to enhance the fault-tolerance of a
large-scale machine.

� Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg and
Adolfy Hoisie. Hardware- and Software-Based Collective
Communication on the Quadrics Network. In IEEE
International Symposium on Network Computing and
Applications 2001 (NCA 2001), Boston, MA, October
2001.
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Job Scheduling and Resource Management

� Study of the scalability of RMS and gang scheduling

� Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll and
Wu-chun Feng. Gang Scheduling with Lightweight
User-Level Communication . In 2001 International
Conference on Parallel Processing (ICPP2001), Workshop
on Scheduling and Resource Management for Cluster
Computing, Valencia Spain, September 2001.
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Resources
More information on our work can be found at

� www.c3.lanl.gov/~fabrizio/quadrics.html
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